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Abstract

The National Wildlife Strike Database for Civil Aviation in the United States contained 38,961 reports of aircraft collisions with birds

(bird strikes) from 1990–2004 in which the report indicated the height above ground level (AGL). I analyzed these strike reports to

determine the distribution of all strikes and those strikes causing substantial damage to aircraft by height. For the 26% of strikes

above 500 feet (152 m) AGL (n¼ 10,143), a simple negative exponential model, with height as the independent variable, explained

99% of the variation in number of bird strikes per 1,000-foot (305-m) interval. Strikes declined consistently by 32% every 1,000 feet

from 501–20,500 feet (153–6,248 m). For strikes at �500 feet, passerines, gulls and terns, pigeons and doves, and raptors were the

identified species groups most frequently struck. For strikes at .500 feet, waterfowl, gulls and terns, passerines, and vultures were

the species groups most frequently struck. For strikes that resulted in substantial damage to the aircraft, 66% occurred at �500

feet, 29% between 501–3,500 feet (153–1,067 m), and 5% above 3,500 feet. A higher (P , 0.001) proportion of strikes between

501–3,500 feet caused substantial damage to the aircraft (6.0%) than did strikes at �500 feet (3.6%) or at .3,500 feet (3.2%). For

strikes at �500 feet, July–October were the months with the greatest proportion of strikes relative to aircraft movements. For

strikes at .500 feet, September–November and April–May had more strikes than expected. About 61% of the reported strikes

above 500 feet occurred at night, compared to only 18% of civil aircraft movements. Thus, about 7 times more strikes occurred per

aircraft movement at night compared to day above 500 feet. This analysis confirmed that management programs to reduce strikes

should focus on the airport environment because 74% of all strikes and 66% of strikes causing substantial damage occur at �500

feet. To minimize significant strike events occurring outside the airport (.500 feet), efforts to predict or monitor bird movements

using bird avoidance models and bird-detecting radar need to focus on heights between 500 and 3,500 feet AGL, with special

emphasis on night movements of birds during April–May and September–November. (JOURNAL OF WILDLIFE MANAGEMENT

70(5):1345–1350; 2006)
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Aircraft collisions with birds and other wildlife (wildlife
strikes) are an increasingly serious economic and safety
problem, related in part to increasing populations of various
large-bird species (e.g., Canada geese [Branta canadensis],
Dolbeer and Eschenfelder 2002). Cleary et al. (2005)
estimated wildlife strikes (98% involving birds) cost the
civil aviation industry in the United States about $500
million per year from 1990–2004. Allan and Orosz (2001)
estimated that bird strikes annually cost commercial air
carriers over US$1.2 billion worldwide from 1999–2000.
Bird strikes with civil and military aircraft from 1988–2005
killed at least 192 people and destroyed 144 aircraft
(Richardson and West 2000, Thorpe 2003, Thorpe 2005,
R. A. Dolbeer, United States Department of Agriculture,
unpublished data).

The Federal Aviation Administration (FAA) has a
standard form (5200–7) for the voluntary reporting of bird
and other wildlife strikes with civil aircraft in the United
States. The FAA has entered strike reports into a national
database since 1990. Management programs to reduce bird
strikes have focused on dispersing birds from the airport
environment (Cleary and Dolbeer 2005) because over 70%
of wildlife strikes in the database occur below a height of
500 feet (152 m) above ground level (AGL; Cleary et al.
2005). I consider the airport environment to encompass an
area out to 10,000 feet (3,048 m) from the runway, which is

the distance where aircraft on approach typically descend
below 500 feet AGL. The FAA-recommended restrictions
on land uses that attract birds (e.g., landfills) extend to a
distance of 10,000 feet from runways for airports servicing
turbine-powered aircraft (Cleary and Dolbeer 2005).

However, there have been bird strikes reported at heights
up to 32,000 feet (9,754 m) in the United States (Cleary et
al. 2005) and 37,000 feet (11,278 m) in Africa (Laybourne
1974). My objective was to examine bird-strike reports for
civil aircraft in the United States to determine the
distribution of strikes by height (AGL) in relation to season
of year and time of day (daylight vs. dark). This analysis may
prove useful to ornithologists interested in the height
distribution of migrating and soaring birds and to people in
the aviation industry and wildlife management profession
attempting to reduce the probability of bird strikes in the
airport environment and off-airports at heights above 500
feet.

Methods

I used data from the FAA’s National Wildlife Strike
Database for Civil Aviation (Cleary et al. 2005). I used
strike reports from January 1990–December 2004, excluding
strikes with nonbird species and bird strikes without a
reported height.

To examine the relationship between height above 500
feet and number of strikes, I grouped the number of strikes
into 20 1,000-foot (304-m) intervals from 501–1,500 feet1 E-mail: Richard.a.dolbeer@aphis.usda.gov
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(153–457 m, interval 1 with a mean height of 1,000 feet
[304 m]) to 19,501–20,500 feet (5,944–6,248 m, interval 20
with a mean height of 20,000 feet [6,096 m]). I used 1,000-
foot increments centered on 1,000-foot intervals because
outside the airport environment, pilots often report strikes
to the nearest 1,000-foot interval. Using height interval as
the single independent variable and number of reported
strikes per interval as the dependent variable, I determined
the equation that gave the best correlation (Statistix 2003).

To determine if strikes at certain height bands were more
hazardous to aircraft than at others, I used Chi square
analysis (Statistix 2003) to test the null hypothesis that the
proportion of reported strikes causing substantial damage to
the aircraft did not differ among height bands from 0–500
feet, 501–3,500 feet (153–1,067 m), and above 3,500 feet.
The FAA classified bird-strike-related damage as substan-
tial when the aircraft was destroyed or incurred damage or
structural failure that adversely affected the structural
strength, performance, or flight characteristics of the aircraft
and that normally required major repair or replacement of
the affected component (International Civil Aviation
Organization 1989, Cleary et al. 2005).

To determine if the frequency of all strikes varied
throughout the year for strikes above and below 500 feet, I
used a Multinomial test (Statistix 2003) to test the null
hypothesis that the monthly proportion of reported strikes
and strikes causing substantial damage did not differ from the
monthly proportion of aircraft movements by commercial air
carriers, 1990–2004 (FAA 2005).

To determine if the frequency of strikes differed between
night and day for strikes above and below 500 feet, I used a
Multinomial test to test the null hypothesis that the
proportion of reported strikes during night and day (one-

half hour before sunrise to one-half hour after sunset) did
not differ from the proportion of aircraft movements during
night and day, 1990–2004. I used the number of aircraft
movements during night and day for itinerant (i.e.,
nonlocal) air traffic at all Canadian airports below 608

latitude, 1995–2003 (M. Villeneuve, Aviation Statistics,
Transport Canada, unpublished data). Data for the
proportion of night and day movements in the United
States mimic the data for Canada, but were not available (E.
C. Cleary, FAA, personal communication).

Results

From 1990–2004, there were 38,961 reported bird strikes in
which the height was provided; 74% of these strikes
occurred within 500 feet of the ground, 19% from 501–
3,500 feet, and 7% above 3,500 feet (Table 1). Fifty percent
(14,375) of the strikes at �500 feet, 27% (2,021) of the
strikes from 501–3,500 feet, and 12% (331) of the strikes
above 3,500 feet identified the species or species group
involved. For strikes at �500 feet, passerines, gulls and
terns, pigeons and doves, waterfowl, and birds of prey were
the species groups most frequently struck. For strikes above
500 feet, waterfowl, gulls and terns, passerines, birds of prey,
and vultures were the species groups most frequently struck.
Waterfowl comprised 53% of the identified birds struck
above 3,500 feet.

Height Distribution of Strikes Above 500 Feet
For the 26% of strikes occurring above 500 feet, a negative
exponential model with height as the independent variable
explained 99% of the variation in number of bird strikes per
1,000-foot interval (Fig. 1). The number of strikes declined
consistently by 32% every 1,000 feet from 501–20,500 feet.

Table 1. Species groups of birds reported as struck by civil aircraft in the United States at heights �500 (152 m), 501–3,500 (153–1,067 m), and
.3,500 feet above ground level (AGL), 1990–2004.

Height (feet) AGL

Species group 0–500 501–3,500 .3,500 Total

Passerines (Passeriformes) 4,317 357 55 4,729
Gulls/terns (Laridae) 4,062 471 49 4,582
Pigeons/doves (Columbidae) 1,962 70 5 2,037
Waterfowl (Anatidae) 1,160 656 177 1,993
Hawks/eagles/kites (Accipitridae) 1,247 169 20 1,436
Shorebirds (Charadriiformes) 555 11 7 573
Herons/egrets/bitterns/storks (Ciconiiformes) 362 27 2 391
Vultures (Cathartidae) 162 194 11 367
Owls (Strigiformes) 281 10 2 293
Grouse (Tetraonidae) 98 1 0 99
Cranes (Gruidae) 47 8 0 55
Nighthawks/swifts (Caprimulgidae/Apodidae) 44 8 1 53
Pelicans (Pelecanidae) 22 8 1 31
Cormorants (Phalacrocoradicae) 15 9 1 25
Albatrosses (Diomedeidae) 14 0 0 14
Rails/coots (Rallidae) 7 4 0 11
Loons/grebes (Gaviidae/Podicipedidae) 3 7 0 10
Miscellaneous birds 17 11 0 28

Total known birds 14,375 2,021 331 16,727
Total unidentified birds 14,431 5,448 2,355 22,234
Total birds 28,806 7,469 2,686 38,961
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Thus, whereas 74% of the total reported strikes occurred at

�500 feet, 19% occurred between 501–3,500 feet and only
7% occurred above 3,500 feet (Table 2).

Proportion of Strikes Causing Substantial Damage

by Height Band

Whereas 26% of all strikes occurred above 500 feet, 34% of

all strikes causing substantial damage occurred above 500

feet. A higher (P , 0.001) proportion of strikes between

501–3,500 feet caused substantial damage to the aircraft

(6.0%) than did strikes at �500 feet (3.6%) or at .3,500

feet (3.2%; Table 2).

Proportion of Strikes by Month

For both strikes above and below 500 feet, the proportion of

strikes occurring each month was different (P , 0.001) than

expected based on the proportion of aircraft movements

during those months (Table 3). For strikes at �500 feet,

July–October were the months with the greatest proportion

of strikes; August was the peak month. The months

December–April had fewer strikes than expected. For

strikes at .500 feet, September–November and April–

May had more strikes than expected and December–

February and June–July had fewer than expected.

Proportion of Strikes by Day and Night
Overall, there were about 2.5 times more strikes reported
during daylight hours than at night (Table 4). However,
because an estimated 4.5 times more aircraft movements
occurred during day than at night, about 1.8 times more
strikes per aircraft movement occurred at night than in the
day (P , 0.001). This overall higher strike rate at night was
due to the pronounced proportion of strikes above 500 feet
occurring at night. About 61% of the reported strikes above
500 feet occurred at night compared to 18% of aircraft
movements (P , 0.001). In contrast, proportionally fewer
strikes occurred at �500 feet at night (16%), compared to
the 18% of aircraft movements at night (P , 0.001). Above
500 feet, about 7 times more strikes occurred per aircraft
movement at night compared to day (Table 4).

Discussion

My analysis confirmed (Dolbeer et al. 2000, MacKinnon
2002) that management programs to reduce bird strikes
with civil aircraft should focus on the airport environment
because 74% of all strikes and 66% of strikes causing
substantial damage to aircraft occurred at �500 feet. An
analysis of data on the 25 large-transport aircraft (.5,700
kg takeoff weight) crashes caused by bird strikes worldwide
since 1960 also supported these findings (Richardson and
West 2000, Thorpe 2003, 2005). Bird strikes occurred at
,500 feet in 23 of the 25 (92%) accidents.

The months of July–October, especially August, were the
months with the highest strike rates below 500 feet. With
the addition of large numbers of recently fledged birds,
populations of most bird species in North America are at
their highest levels in late summer (Dolbeer 1998). In
addition, these young birds are less adept than older birds at
avoiding aircraft (Burger 1985, Kelly et al. 2001). During
this pre-autumn-migration period, most strikes (84%) at
�500 feet occurred during the day, probably when birds
were undertaking localized movements for foraging and
roosting.

Aircraft during climb and descent provide a unique
method of sampling bird numbers at heights above 500
feet that lack the influence of bird-management actions on
the ground at airports (Cleary and Dolbeer 2005). Above
500 feet, strikes declined exponentially by a remarkably
consistent 32% per 1,000-foot interval up to 20,500 feet.
The fact that the numbers of strikes reported independently
by thousands of pilots over a 15-year period generated such

Figure 1. Number of reported bird strikes with civil aircraft in the United
States from 1990–2004 as a function of 20 1,000-foot (305-m) height
intervals from 501–1,500 feet (153–457 m, interval 1) to 19,501–20,500
feet (5,944–6,248 m, interval 20) above ground level (n ¼ 10,143
strikes). The number of reported strikes declined consistently by 32%
for each 1,000-foot gain in height. There were 28,806 strikes reported
from 0–500 feet (152 m) and 12 strikes reported from 20,501–32,500
feet (6,249–9,906 m) not included in this analysis.

Table 2. Proportion of bird strikes with civil aircraft in the United States causing substantial damage at heights �500 (152), 501–3,500 (153–1,067),
and .3,500 feet (1,067 m) above ground level (AGL), 1990–2004.

Height of
aircraft

(feet AGL)

All reported strikes Reported strikes with substantial damage % of strikes
causing substantial

damageaNo. % of total No.a % of total

0–500 28,806 74 1,023 66 3.6
501–3,500 7,469 19 445 29 6.0
.3,500 2,686 7 85 5 3.2
Total 38,961 100 1,553 100 4.0

a The proportion of strikes and strikes causing substantial damage differed (P , 0.001, v2 ¼ 94.9, 2 df) among height bands.
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a consistent exponential decay in relation to height suggests

that the mean height distribution of birds above 500 feet has

a fundamental relationship to some physical parameter,

perhaps air density or energy expenditure to gain height.

Although some birds occasionally migrate at or soar to

extreme heights of .20,000 feet (Alerstam 1990), I found

that 93% of the strikes (and presumably birds) were below

3,500 feet. Only 5% of the reported strikes causing

substantial damage to aircraft occurred from 3,500 feet up

to 32,500 feet (9,906 m), compared to 29% between 501

and 3,500 feet and 66% at or below 500 feet. Bellrose

(1971) documented heights of nocturnally migrating birds

from a small airplane and found a similar pattern. Bellrose

(1971) determined that the location of the majority of birds

was between 500–1,000 feet, with numbers rapidly dropping
off to almost 0 by 5,000 feet (1,524 m).

Above 500 feet, the peak months of strikes were April–
May and September–November, which differed from the
seasonal pattern below 500 feet. These spring and autumn
months coincide with peak migration periods when birds are
more likely to be flying at heights above 500 feet (Bellrose
1971, Alerstam 1990, Gauthreaux and Belser 2003).
Because many birds migrate at night (Bellrose 1971,
Gauthreaux and Belser 2003), this also helps explain the
increased nocturnal strike rate above 500 feet compared to
,500 feet.

To assist pilots in avoiding birds and significant strike
events at heights above 500 feet (i.e., outside the airport
environment), researchers have undertaken efforts to predict

Table 3. Percent of strikes to civil aircraft in the United States occurring at �500 and .500 feet (152 m) above ground level by month and the ratio of
these percentages to the percent of aircraft movements each month, 1990–2004.

Month

% of total Ratio: % of all strikes/% of movementsd

Aircraft movementsa Strikes �500 feetb Strikes .500 feetc �500 feet .500 feet

Jan 8.04 4.33 2.88 0.54 0.36
Feb 7.52 3.71 3.25 0.49 0.43
Mar 8.43 4.86 6.48 0.58 0.77
Apr 8.22 5.86 9.22 0.71 1.12
May 8.49 8.23 11.40 0.97 1.34
Jun 8.47 9.05 4.01 1.07 0.47
Jul 8.77 13.33 4.76 1.52 0.54
Aug 8.92 15.50 8.63 1.74 0.97
Sep 8.22 12.43 16.64 1.51 2.02
Oct 8.59 10.42 19.19 1.21 2.23
Nov 8.05 7.44 9.72 0.92 1.21
Dec 8.28 4.85 3.83 0.59 0.46

Total 359,315,179 28,806 10,155

a Based on total number of aircraft movements by month for commercial aircraft in the United States, 1990–2004 (Federal Aviation
Administration 2005).

b The proportion of strikes at �500 feet occurring each month was different (v2 ¼ 4,932, 11 df, P , 0.001) than expected based on the
proportion of movements each month.

c The proportion of strikes at .500 feet occurring each month was different (v2 ¼ 3,653, 11 df, P , 0.001) than expected based on the
proportion of movements each month.

d Ratios above and below 1.0 indicate that the number of strikes occurring that month were greater or lesser than expected, respectively,
than would have occurred if the proportion of aircraft-striking birds was equal to the proportion of aircraft movements.

Table 4. Percent of strikes to civil aircraft in the United States occurring at �500 and .500 feet (152 m) above ground level during night and day
(one-half hour before sunrise to one-half hour after sunset), 1990–2004, and the ratio of these percentages to the percentage of aircraft movements
during night and day.

% of total Ratio: % of strikes/% of movementsa

Time
Aircraft

movementsa
Strikes
�500 feet

Strikes
.500 feet

Total
strikes

Strikes
�500 feet

Strikes
.500 feet

Total
strikes

Night 18.2 15.6 60.8 28.1 0.86 3.34 1.54
Day 81.8 84.4 39.2 71.9 1.03 0.48 0.88
Total 22,612 8,609 31,221
Ratio: night/day 0.22 0.19 1.55 0.39 0.83b 6.96c 1.75d

a The proportion of aircraft movements during night and day is based on data from Transport Canada for 1995–2003 (see Methods). Night
movements annually ranged from 16.7–19.7% (mean 18.2%) of total movements (40,744,109) for the 9-yr period.

b The proportion of strikes at �500 feet during night and day was different (v2 ¼ 99.0, 1 df, P ¼ ,0.001) than expected, based on the
proportion of movements during night and day.

c The proportion of strikes at .500 feet during night and day was different (v2 ¼ 10,469.7, 1 df, P , 0.001) than expected, based on the
proportion of movements during night and day.

d The proportion of total strikes during night and day was different (v2¼ 2,048.6, 1 df, P , 0.001) than expected, based on the proportion of
movements during night and day.
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and monitor bird movements using bird-avoidance models
(Lovell and Dolbeer 1999, Kelly et al. 2000) and bird-
detecting radar (Ruhe 2000, Bell 2003, Gauthreaux and
Belser 2003). Based on my findings, these efforts need to
focus on heights below 3,500 feet, with special emphasis on
movements of birds at night during periods of migration,
especially April–May and September–November. Further-
more, the exponential reduction by 32% of the mean
probability for a bird strike for every 1,000-foot increase in
height is a general rule that may be useful for planners of
military low-level training flights (Lovell and Dolbeer
1999). For example, changing the height of a training flight
from 1,500 feet to 3,500 feet would reduce the mean
probability of a bird strike by 54%.

Waterfowl were by far the most frequently struck species
above 500 feet and especially above 3,500 feet. These species
typically have large (.1 kg) body masses and migrate in
flocks, making them particularly hazardous to aircraft
traveling at higher speeds (Dolbeer and Eschenfelder
2002). Civil aviation authorities in the United States,
Canada, and Mexico already have rules or proposed rules to
restrict aircraft to indicated airspeeds of 250 knots (463 km/
hr) or less below 10,000 feet, in part because of concerns
about strikes with these larger bird species (Sowden and
Kelly 2002, Eschenfelder 2005). Because of a fundamental
relationship between energy (e), mass (m), and velocity (v)
expressed in the equation e ¼ 0.5 mv2, aircraft velocity is
even more critical than bird mass in determining the energy
imparted to an aircraft by a strike (Dolbeer and Eschen-
felder 2002). To reduce the probability and severity of
strikes with these larger species, pilots should minimize
flight time and airspeed below 10,000 feet and especially
below 3,500 feet at night during periods of migration by
increasing the rate of climb on departure and delaying
descent into these zones on arrival until necessary to descend
to land. Increasing the rate of climb will result in a reduction
in airspeed (Sowden and Kelly 2002), which is of critical
importance.

I did not attempt to conduct comparative analyses by
species of birds because identification to a species group

occurred in only about 23% of the bird strikes above 500
feet. As improvements in the identification of struck species
through feather and DNA analysis occur (Hermans et al.
1996, Dove 1997, Hebert et al. 2003) and as sample sizes
increase with additional years of bird-strike data, compar-
isons of height distributions by various species and species
groups of birds should be possible.

Management Implications

Management programs to reduce bird strikes with civil
aircraft should focus on the airport environment because
66% of strikes causing substantial damage to aircraft
occurred at �500 feet. Daylight hours during the months
of July–October, especially August, had the highest strike
rates below 500 feet. Outside the airport environment, the
height zone from 500 feet to 3,500 feet is the most
hazardous, especially at night. Because strikes decline
exponentially by 32% per 1,000-foot increase in height
above 500 feet, military planners can substantially reduce the
mean probability of bird strikes by increasing the height of
training flights. A 2,000-foot increase in height (e.g., from
1,500 feet to 3,500 feet) translates to a 54% reduction in the
mean probability of a strike. Pilots of civil transport aircraft
should minimize flight time and airspeed during climb and
descent flight phases below 10,000 feet and especially below
3,500 feet at night during periods of migration to reduce the
probability and severity of strikes.
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